Big data initially was characterized in terms of “the three V’s,” volume, velocity and variety. Nearly five years ago I wrote about the three V’s as a way to explain why new and different technologies were needed to deal with big data. Since then the industry has tackled many of the technical challenges associated with the three V’s. In 2017 I propose that we focus instead on a different letter, which includes these A’s: analytics, awareness, anticipation and action. I’ll explain why each is...
Read More
Topics:
Data Science,
Machine Learning,
Analytics,
Business Intelligence,
Collaboration,
Data Preparation,
Internet of Things,
Information Optimization
IBM recently held its inaugural World of Watson event. Formerly known as IBM Insight, and prior to that IBM Information on Demand, the annual event, attended by 17,000 people this year, showcases IBM’s data and analytics and the broader IBM efforts in cognitive computing. The theme for the event, as you might guess, was the Watson family of cognitive computing products. I, for one, was glad to spend more time getting to know the Watson product line, and I’d like to share some of my observations...
Read More
Topics:
Big Data,
Data Science,
Machine Learning,
Analytics,
Cloud Computing,
Data Governance,
Data Integration,
Internet of Things,
Information Optimization,
Digital Technology
I recently attended .conf2016, Splunk’s seventh annual user conference. Splunk created the market for analyzing machine data (shorthand for machine-generated data), which consists of log files and event data from various types of systems and devices. Our big data analytics benchmark research shows that these are two of the most common sources of big data that organizations analyze. This market has proven to be fertile ground for Splunk, growing steadily with revenues more than doubling over the...
Read More
Topics:
Machine Learning,
Splunk,
Machine data,
Operational Intelligence